
Pasha: An Efficient, Scalable Database Architecture for CXL Pods
Yibo Huang, Newton Ni, Vijay Chidambaram, Emmett Witchel, Dixin Tang

The University of Texas at Austin
{ybhuang,nwtnni,vijayc,witchel,dixin}@cs.utexas.edu

Abstract
Memory connected via Compute Express Link (CXL) presents a new
opportunity for building efficient and scalable databases. A CXL Pod
is a small number of independent hosts connected via CXL to shared
memory (termed CXL memory). A small part of the CXL memory is
hardware-cache-coherent across hosts. This paper proposes Pasha,
a new database architecture for the CXL Pod, that aims to efficiently
leverage the fast synchronization enabled by the hardware-cache-
coherence of CXL memory and the low latency and high bandwidth
of local DRAM in each host. To achieve this goal, Pasha divides
and stores data into partitions, with each partition owned by a
single host, and a shared region that every host has access to. Then,
Pasha uses CXL memory to efficiently synchronize concurrent
accesses to the shared region across hosts and stores each partition
of data in local DRAM to leverage its low latency without cross-
host synchronization overhead. In addition, Pasha ensures that
each host completes its transactions by directly reading or writing
data in either its own partition or the shared region, circumventing
multi-host transactions and two-phase commit (2PC). Pasha obtains
the best of partition-based distributed databases and single-node
shared-memory databases; preliminary results show it outperforms
both architectures.

1 Introduction
Scaling a single-node OLTP database to multiple nodes with mini-
mal overhead is a holy-grail problem in the database community and
has been studied for decades [8, 17, 20, 24, 36, 42, 46, 48, 52, 53, 57].
Efficiency and scalability are critical not only for supporting high
transaction throughput and large volumes of data, but also for
providing the elasticity required to handle fluctuating transaction
workloads. These goals are increasingly crucial for today’s cloud
databases [3–5], which elastically provision resources for dynamic
workloads and charge customers only for consumed resources.

The traditional approach to scaling a single-node database is par-
titioning data across multiple hosts (as Figure 1(a) shows), and
letting each host process all read/write operations to its parti-
tion [17, 24, 36, 42]. This partition-based architecture works well
when the workload mainly includes single-host transactions, i.e.,
transactions whose read/write operations only access the data in a
single partition and can be completed by a single host. However, for
a transaction that needs to access multiple partitions (i.e.,multi-host
transactions), performance is degraded because read/write opera-
tions and transactions must be coordinated across multiple hosts,
which usually requires numerous cross-host message exchanges

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution, provided that you
attribute the original work to the authors and CIDR 2025. 15th Annual Conference
on Innovative Data Systems Research (CIDR ’25). January 19-22, Amsterdam, The
Netherlands

and costly protocols such as two-phase commit (2PC). (We avoid
the term distributed transaction because it is not used consistently
in the literature to distinguish single-host from multi-host transac-
tions.) As a result, the database performance drops significantly as
the number of multi-host transactions increases, even after decades
of optimizations [33, 34, 40, 51, 55].
A New Opportunity: CXL Pod. We believe the emergence of
Compute Express Link (CXL) provides a new opportunity for ef-
ficiently scaling databases without introducing multi-host trans-
actions. One use for CXL is to allow a small number of hosts (e.g.,
sixteen hosts [31]) to be physically connected via the PCIe bus to a
shared memory module, called CXL memory. CXL is a serial proto-
col to allow CPUs to directly access memory and it provides a much
lower latency compared to RDMA-based shared memory (see §2).
The CPU issues regular, cacheable loads and stores to CXL mem-
ory, unlike RDMA-based access, which requires specialized verbs
and a support library. Additionally, the new features of CXL 3.0
and 3.1 [1, 7] allow CXL memory to support cross-host hardware
cache coherence through back-invalidations based on a snoop filter,
which is not supported by RDMA networks. Such a collection of
machines that share CXL memory is called a CXL pod [47, 56].

Providing hardware cache coherence for the entire CXL mem-
ory address space will be too expensive to be practical, as shown
by AMD and others [14, 23]. Based on the conversation with our
industrial partners and CXL vendors, such as Microsoft, Samsung,
and Micron, the hardware cache-coherent region will be hundreds of
MBs while the capacity of CXL memory will be terabytes.

Despite including a small number of hosts, a CXL pod offers
abundant computing resources for processing OLTP workloads. For
instance, Intel’s recently announced Sierra Forrest processor will
feature 288 cores [9]. By building a CXL pod with 16 hosts, each
equipped with a single Sierra Forrest processor and local DRAM,
and physically connected to a CXL memory module, the pod has a
total of 4,608 cores that share CXL memory.
Key Insights of Designing Databases for CXL Pods. The CXL
pod makes feasible a new class of databases that get the best of
both partition-based distributed databases and single-host shared-
memory databases. There are two key insights. First, shared CXL
memory, even if only a small part of it has hardware cache coher-
ence, can significantly increase transaction throughput by turning
multi-host transactions into single-host transactions. The shared re-
gion can efficiently synchronize the accesses across multiple hosts
using shared data structures and atomic operations similar to a
shared-memory database, which is more efficient than sending
messages over the network to coordinate transactions (e.g., 2PC).
Second, each host in the CXL pod has local DRAM and synchroniza-
tion across processes/threads within a single host is more efficient
than synchronization across multiple hosts. Therefore, it is desir-
able to leverage data partitioning from partition-based databases
to reduce the synchronization overhead across hosts.

1



Shared CXL Memory

Message
Passing

CPUs

DRAM

Host 1

Partition 1

Shared Region

CPUs

DRAM

Host 2

RDMA-based Memory Server
Shared Data

Cached Data

CPUs

DRAM

Host 2

Cached Data

CPUs

DRAM

Host 1

Partition 2

CPUs

DRAM

Host 2

Partition 1

CPUs

DRAM

Host 1

(b) RDMA-based Shared-Memory
Database Architecture

RDMA Networks

Message
Passing

Message
Passing

(a) Partition-based Shared-Nothing
Database Architecture

Partition 2

PCIe PCIe

(c) Pasha: Partitioned and Shared Architecture
(This paper)

Figure 1: An illustration of comparing two existing architectures and Pasha (this paper) for scaling a single-node OLTP database

One challenge for our design is properly modeling the cost for
atomics (e.g., test-and-set) that support inter-host cache coherence
as we do not yet have hardware prototypes for inter-host cache
coherence.
ANewDatabase Architecture. In this paper, we propose Pasha, a
novel database architecture that takes advantage of both Partitioned
and shared database architectures for scaling a single-node shared-
memory database on a CXL pod without introducing multi-host
transactions. Figure 1(c) shows an example configuration of Pasha.
In this architecture, data is divided and stored into partitions (e.g.,
Partition 1 and 2 in Figure 1(c)) and a shared region, which include
disjoint sets of data. Each partition stores data assigned to a specific
host and this host handles all read/write operations to its partition
while the shared region stores data that every host has access to.
Each host stores their partition in local DRAM and the shared region
is stored in CXL memory.

To eliminate multi-host transactions, Pasha ensures all data
tuples required by a transaction are either in a host’s local partition
or the shared region by dynamically moving data across the shared
region and partitions (§3). This way, the database can complete
all read/write operations of a transaction using a single host and
leverage a single-node concurrency control protocol to coordinate
transaction executions across hosts. For example, in Figure 1(c),
Pasha ensures Host 1 only needs to access Partition 1 and the
shared region to complete a transaction. When using two-phase
locking (2PL) for concurrency control, before Host 1 writes a data
tuple in the shared region it will acquire a lock, which is also stored
in the shared region. The other hosts (e.g., Host 2 in Figure 1(c)) will
later observe this lock if they need to access the same data tuple.

Pasha wants the best of both worlds: the fast coordination of
shared memory and the reduced cross-host synchronization and
conflicts enabled by partitioned data. Allowing transactions to ac-
cess data either in a local partition or in the shared region enables
each host to execute and coordinate all transaction operations on
their own, which is the major benefit Pasha derives from a shared-
memory architecture. On the other hand, partitioning data along
with transactions significantly reduces the amount of data that
requires coordination across hosts [18, 40], a key benefit from a
partition-based architecture. By placing partitions in local DRAM,
a partition-based architecture improves end-to-end performance by

leveraging the lower latency and higher bandwidth of local DRAM
relative to CXL memory. Our preliminary results have shown that
Pasha has up to 5.9× and 1.4× higher throughput than a partition-
based shared-nothing architecture and a completely shared, shared-
memory architecture, respectively.
Research Challenges. Exploiting the performance benefits of
Pasha requires addressing two broad challenges: (1) how to best
utilize the hardware cache-coherent region of CXL memory, and
(2) how to leverage the low latency and high bandwidth of local
DRAM (compared to CXL memory). For the first challenge, we need
to leverage the (limited) hardware cache-coherent region for syn-
chronization primitives like latches and design an efficient software
cache-coherence protocol to support a shared region larger than
the hardware cache-coherent region. For the second challenge, we
want to maximize the size of data stored in partitions to efficiently
leverage the high performance of local DRAM. A partition of data
is owned by a host and can be stored in local DRAM without syn-
chronization across hosts. Effective partitioning in Pasha requires
a new data partitioning algorithm and a data movement protocol
between the shared region and partitions. Furthermore, we need to
adapt existing concurrency-control protocols (e.g., MVCC [27]) to
efficiently support the data movement protocol.

In addition, the abundant computing resources (e.g., possibly
over 4,000 cores as discussed earlier) in a CXL pod introduces new
challenges for database designs: addressing high concurrency and
tolerating partial failures (e.g., a database process or a host fails,
but the other processes continue to execute transactions). Finally,
CXL memory provides a new research opportunity for auto-scaling
and achieving efficient elasticity.
Related Work. There is a recent line of research that adopts fast
RDMA networks along with a shared and disaggregated memory
architecture to avoid multi-host transactions and 2PC in partition-
based shared-nothing databases [8, 20, 46, 48, 52, 53, 57]. In this
architecture, all hosts can read and write data in shared memory
through RDMA networks without requiring multi-host transac-
tions [46, 52, 53], as shown in Figure 1(b). These systems require
global synchronization for all data while Pasha requires global
synchronization only for shared data in CXL memory. In addition,
the latency for memory access through RDMA networks can be
one to two orders of magnitude higher than local DRAM and CXL

2



memory, as shown in §2. While some papers consider caching data
in local DRAM to reduce the cost of fetching data from the shared
memory [8, 48], they require a potentially costly data coherence
protocol across multiple hosts due to the lack of hardware cache-
coherence support for RDMA. Pasha, instead, aims to leverage the
low latency of local DRAM and CXL memory and the efficiency of
the limited cross-host hardware cache coherence of CXL memory.

Two papers discuss the research challenges of leveraging CXL
memory to scale databases, but neither of them propose a concrete
database architecture for efficiently utilizing CXL memory [22, 30].
Contributions. This paper makes the following contributions: 1)
we propose Pasha, a novel database architecture that has the best
of partitioned and shared database architectures; 2) we describe
the designs of Pasha and present the research challenges (§3); 3)
we demonstrate the potential performance benefits of Pasha using
preliminary experiments (§4).

2 CXL Pod Preliminaries
In this section, we briefly describe the architecture of CXL pods
and show the performance characteristics of CXL memory relevant
to database design. A more comprehensive background discussion
can be found in prior papers [29–31].

2.1 CXL memory and a CXL pod
CXL is an open standard that facilitates low-latency and high-
bandwidth interconnections between CPUs, devices, and heteroge-
neous memory based on PCIe 5.0 and 6.0. It includes three protocols.
CXL.io is a PCIe-based block input/output protocol. CXL.cache al-
lows peripheral devices to access and cache host CPU memory
while CXL.mem allows host CPU to access peripheral memory with
load/store commands [6]. Shared CXL memory is based on CXL.io
and CXL.mem (i.e., a Type 3 device [6]).

CXL specifications define different capabilities of CXL proto-
cols [6]. CXL 1.1 allows a single node to access PCIe-connected
expanded memory in a cache-coherent manner. CXL 2.0 adds sup-
port for coarse-grained memory pooling where multiple nodes
access disjoint CXL regions. CXL 3.0 adds fine-grained sharing
and hardware-supported cache coherence across hosts using back-
invalidates.

A CXL pod, as shown in Figure 2, includes a limited number of
machines (e.g., 16) and a shared CXL memory module, connected
by a CXL switch. We focus on a small number of machines because
they already provide rich computing resources (e.g., up to 4,608
cores as shown in the introduction) and a prior paper shows that this
scale of configuration has small latency and bandwidth penalties
compared to a single host [31]. We assume that a limited region of
the CXL memory module (e.g., 256MB) is hardware cache-coherent
across different hosts using back-invalidates [7], while the rest
of the memory relies on software protocols to provide coherence
across hosts (§3).

2.2 Performance characteristics of CXL memory
Our evaluation (§4) uses a hardware prototype CXL module. The
evaluation machine includes two Intel Xeon 8460H CPUs, 1 TB
local DRAM, and a 128 GB CXL 1.1 memory device. Both local
DRAM and CXL memory use DDR5 4800 DRAM. The CXL memory

CPUs
Host 1

DRAM

CPUs
Host 2

DRAM
... CPUs

Host N

DRAM

CXL Switch

CXL Pod

PCIe PCIe PCIe

Shared CXL Memory

PCIe

Hardware
Cache-coherent

Software
Cache-coherent

Figure 2: An example configuration of a CXL pod

module has a single memory channel and is connected to the CPU
via a PCIe 5.0 x8 link. We measure the latency and single-channel
bandwidth of local DRAM and CXL memory using Intel’s Memory
Latency Checker [2] under a 3:1 read-write ratio.

We find that the latency of the tested CXL memory is around
2.3× higher than local DRAM and its bandwidth is 58% of the single-
channel bandwidth of local DRAM. Note that at the request of the
hardware manufacturer, we only provide normalized performance,
not absolute measurements. Nevertheless, our measurements are
similar to previous systems measurements [31, 41, 56] that show
local DRAM with higher performance than CXL memory, neces-
sitating the use of local DRAM in high-performance systems. In
addition, the latency of CXL memory is one to two orders of magni-
tude lower than RDMA-based disaggregated memory [21], showing
the significant benefits of exploiting CXL memory to design next-
generation databases.

3 Pasha Architecture and Challenges
In this section, we describe the Pasha architecture and the research
challenges for realizing Pasha.

3.1 Pasha architecture
The Pasha architecture aims to leverage the fast synchronization
of hardware-coherent CXL memory to eliminate multi-host trans-
actions, thereby significantly increasing transaction throughput. It
also exploits the low latency and high bandwidth of local DRAM to
further accelerate transaction processing.

To achieve its goals, Pasha divides and stores data into disjoint
partitions. Each host owns a partition and processes all accesses
to it, and there is a single, shared region that all hosts can access.
Pasha ensures that if a host reads/writes a data tuple that does
not exist in its own partition, then the data tuple is present in
the shared region. Pasha coordinates how tuples move between
host-owned partitions and the shared region (described below).
Because all tuples are either in a host’s owned partition or the
shared region, a host can process all operations pertaining to a
transaction, eliminating multi-host transactions. Partitions owned
by a single host are stored in local DRAM to leverage its low latency
and high bandwidth. The shared region is stored in CXL memory.

3



A database based on Pasha initially partitions data across hosts
and stores each partition in each host’s local DRAM [18, 37, 40]. If
a host needs to access a data tuple in a partition owned by another
host, it asks the other host (e.g., by sending a message) to move
the data tuple along with metadata information (e.g., locks) to the
shared region, which is stored in CXLmemory. The host then adopts
a single-host concurrency control (CC) protocol to read/write this
data tuple because it can access it directly via a pointer to the shared
region. In addition, while a data tuple of a host’s partition is resident
in the shared region, the owning host uses the same CC protocol as
other hosts to access the tuple from the shared region. For example,
if 2PL is adopted, a host can acquire a lock on a data tuple in the
shared region. This lock, also stored in the shared region, will be
observed by other hosts, ensuring 2PL is followed for concurrent
transactions across hosts. Finally, data in the shared region will
be moved back to their original host’s owned partition in local
DRAM based on a system policy that considers access patterns to
the shared region.

The database ensures durability and atomicity via logging and
checkpoints. Parallel logging might be required to prevent logging
from being the performance bottleneck [45, 54]. One interesting
challenge for ensuring durability and atomicity is how to design
new parallel logging and recovery protocols for dealing with partial
failures: the failure of a single host or process does not impact the
functioning of other hosts/processes and CXL memory.

3.2 Research challenges
We now discuss the challenges for realizing Pasha in the CXL pod.
(1) Accessing Data under Movement. To realize Pasha, the data-
base needs a novel mechanism and policy for moving data between
partitions and the shared region. The challenge is to ensure that
transactions safely and efficiently read and write data when the
data moves between these regions. For example, if one host tries
to commit a transaction that updates data in its partition while
another host asks to move this data item to the shared region, the
database must resolve the conflict safely. One interesting direction
is to co-design the data movement mechanism with existing access
methods (e.g., a B-Tree index over a shared region) and transaction
protocols to efficiently execute read/write operations while main-
taining transaction semantics. An additional challenge is to design
a novel policy that minimizes the size of data moved between local
DRAM and CXL memory to improve performance.
(2) Software Cache Coherence. The recent report from AMD [23]
and our discussions with industry partners show that the size of
the hardware cache-coherent region could be limited; as a result,
there may be frequent data movement between the shared region
and partitions, leading to performance overheads. To compensate
for a limited region of hardware cache-coherence, the database
should use a software cache-coherence protocol for the remaining
memory capacity. A software coherence protocol explicitly tracks
data in order to minimizes data flushes from the CPU cache back
to CXL memory, and to maximize the probability that needed data
is already in the CPU cache.

While software-based cache-coherence has generally been ex-
pensive [39], we believe a promising direction is to design a software

cache-coherence protocol that assumes a region of hardware cache-
coherence and is tailored to the database (e.g., by using a coarser
granularity than a cache line). For instance, one intuitive idea is to
use the hardware cache-coherent region to store metadata that re-
quires intensive synchronization and the software cache-coherent
region to store and track tuples, which are often larger than cache
lines.
(3) SupportingMVCC.Multi-version concurrency control (MVCC)
is widely adopted in major database products due to its flexibility
of allowing more serializable transaction schedules than traditional
protocols (e.g., a read-only transaction never aborts in MVCC).
Therefore, it is important to support MVCC in Pasha. The key
challenge for supporting MVCC stems from the cost of moving all
versions of a data tuple between partitions and the share region.

To address this challenge, one direction is only moving the re-
quested version to the shared region and selectively moving the
versions that will be useful for future transactions back to partitions.
Therefore, different versions of a data tuple may stay in different
places (i.e., some versions are in the shared region, stored in CXL
memory, while some versions are in a partition, stored in local
DRAM). The challenge here is how to commit a transaction if it
reads an old version of data. For example, a host may read a version
in local DRAM while another host may create a new version in
CXL memory.

Our key insight is that MVCC protocols provide the flexibility
of committing a transaction even when it reads an old version [16].
In MVCC, a write to a data tuple creates a new version instead of
performing an in-place update, so it does not invalidate the old
version, which may be stored in a different place. Additionally,
when a transaction reads an old version from the local cache, it can
still maintain serializability and commit if the MVCC protocol is
carefully designed. The research opportunity, therefore, is to design
an MVCC protocol that can efficiently validate transactions that
read old versions of data and maintain serializability.
(4) Data Partitioning. Previous papers on optimizing partition-
based distributed databases propose data partitioning algorithms
to minimize the number of multi-host transactions and maintain
load balance [18, 40]. However, in Pasha, multi-host transactions
are converted into single-host transactions that access a partition
and the shared region. These transactions will be executed more
efficiently if there are fewer operations to the shared region because
the shared region has higher synchronization overhead and higher
data access costs. Therefore, Pasha necessitates a new class of data
partitioning algorithms that minimizes operations on data in the
shared region while maintaining load balance.
(5) High Concurrency. Concurrency control has been shown to
be the performance bottleneck of shared-memory databases when
it leverages a large number of CPU cores to process a skewed work-
load [50]. The abundant CPU resources of a CXL pod prompt us to
rethink concurrency control in designing databases based on Pasha:
given such high concurrency (e.g., 4608 cores), is it still feasible to
resolve conflicts at runtime? We believe one interesting direction
is to carefully schedule transactions to avoid conflicts, similar to
some transactional memory systems [15, 49], rather than execut-
ing transactions immediately as they arrive and resolving conflicts

4



on the fly. The challenge is how to quickly and accurately predict
conflicts between queued transactions and running transactions.
(6) Tolerating Partial Failures. Databases on a CXL pod that
want high availability need to cope with partial failures: a database
process or its associated host fails independently without stopping
progress for the database as a whole. The database should make any
throughput loss from a partial failure proportional to the resources
lost, so if a database is using 32 cores with one thread per core and
it loses a core, throughput should drop by roughly 1

32 . The database
should also minimize recovery time when the failed thread/process
restarts.

One research challenge is that a partial failure may leave in-
memory data structures in an illegal state such as when a process
acquires a latch, partially modifies the lock table, and fails. The
database needs to quickly restore invariants for in-memory data
structures and release latches. An additional challenge is that soft-
ware modules used by the database, like the memory allocator, need
to tolerate partial failures to allow the database as a whole to toler-
ate them. A final challenge is to ensure that transactions processed
on non-failed hosts are not impeded by failures on a different host.
For example, if a host fails in Pasha, we can prioritize recovering
the shared region such that many transactions on the non-failed
hosts can proceed without waiting for the recovery of the partition
owned by the failed host.
(7) Auto-Scaling.Many cloud databases elastically provision re-
sources to accommodate fluctuating workloads (i.e., a varying in-
coming transaction rate), thereby reducing costs for customers with-
out compromising performance [3–5]. Traditionally, auto-scaling
in distributed databases involves replicating data through networks
and adopting a distributed protocol for maintaining transaction
semantics, leading to a long data migration time [25].

To support auto-scaling in Pasha, we consider using CXL mem-
ory to store migrating data and efficiently synchronizing accesses
across hosts to avoid network-based data migration protocols. One
research question for Pasha is how to leverage CXL memory to
quickly migrate data across partitions while processing transac-
tion operations to the migrating data. Additionally, CXL memory
represents a new hardware resource dimension that can scale in-
dependently. Scaling different types of resources (i.e., local DRAM,
CXL memory, CPUs), while achieving the same transaction process-
ing performance, can result in varied costs for different workloads.
One interesting question is how to choose the right type and quan-
tities of resources to scale to address fluctuating workloads while
minimizing costs.

4 Preliminary Results
We want to quantitatively estimate the potential performance ben-
efits of Pasha.
Experimental Setup. We emulate a CXL pod on the machine
described earlier (§2.2) because there are no commercially available
(or hardware prototype) CXL devices that support fine-grained
memory sharing with hardware cache coherence. We run 8 virtual
machines (VMs) on this machine, each with 4 vCPUs and 8 GB local
DRAM, and configure the VMs to share the CXL memory device to
emulate a CXL pod that includes 8machines sharing cache-coherent
CXL memory. The cache coherence across VMs is maintained by

0/0 10/15 20/30 30/45 40/60 50/75 60/90
Multi-warehouse Transaction Percentage (NewOrder/Payment)

0

100K

200K

300K

400K

500K

Th
ro

ug
hp

ut
 (t

xn
s/

se
c)

Sundial-Pasha
Sundial-SHM

Sundial-NET
Sundial-CXL

Figure 3: TPC-C throughput with varying percentages of
multi-warehouse transactions.

hardware as the CXL 1.1 memory device is cache-coherent to its
connected physical machine. That means that inter-host coherence
actions in our testbed are faster than they would be on a CXL pod.
Prototype and Baselines. We compare Pasha with a partition-
based distributed architecture and a shared-memory architecture
in a distributed in-memory OLTP database, Sundial [51]. Sundial
adopts a partitioned-based, share-nothing architecture by default,
which we denote Sundial-NET. We develop a variant of Sundial,
Sundial-CXL, which does not use the network and instead leverages
message queues implemented in the CXL memory to communicate
messages across hosts.

In the shared-memory architecture, all data resides in CXL mem-
ory and all hosts synchronize their accesses via hardware cache-
coherent shared memory (denoted Sundial-SHM). In this configu-
ration, even tables that are only ever accessed by a single host are
still stored in shared CXL memory. Finally, we implement Pasha
by sharing the data that will be accessed by multiple hosts in CXL
memory (i.e., the shared region of Pasha) and partitioning the rest
of the data (which resides in local DRAM). We denote this con-
figuration Sundial-Pasha. Note that our implementation of Pasha
does not support dynamic data movement. Therefore, the data from
shared tables is moved to the shared region before starting a test.
All approaches use two worker threads for transaction processing.
Workload.We test two stored procedures, NewOrder and Payment,
from the TPC-C benchmark [10] as the other three stored proce-
dures are not supported in Sundial. Our test uses 50% NewOrder
and 50% Payment. For Sundial-NET and Sundial-CXL, all the tables
except ITEM are partitioned based on the warehouse ID while ITEM
is replicated at each host because it is read-only and cannot be
partitioned, which is the configuration adopted by Sundial [51]. For
Sundial-SHM, all tables are stored in CXL memory. For Sundial-
Pasha, the database shares the tables to be accessed by multiple
hosts in CXL memory while the other tables are either partitioned
or replicated (i.e., ITEM). We use 8 warehouses, with each warehouse
assigned to a specific host.

5



Results.We measure the overall throughput of TPC-C with vary-
ing percentages of multi-warehouse transactions. In the default
TPC-C setting, 10% of NewOrder and 15% of Payment access mul-
tiple warehouses (i.e., multi-warehouse transactions), which are
multi-host transactions for Sundial-NET and Sundial-CXL in our
experiment setup. We vary the two percentages proportionally.

The results in Figure 3 show that when there are no multi-
warehouse transactions, Sundial-Pasha achieves the same per-
formance as both Sundial-NET and Sundial-CXL since these ap-
proaches perfectly partition the data and store them in local DRAM.
Sundial-Pasha has a 1.4× higher throughput than Sundial-SHM
(with 0%multi-warehouse transactions) because Sundial-SHM shares
all data in the CXL memory and suffers from a higher latency for
memory access. As we increase the ratio of multi-warehouse trans-
actions, the throughput of both Sundial-NET and Sundial-CXL
drops significantly due to the overhead of inter-host communica-
tion of transaction execution and 2PC. For example, with 60% of
NewOrder and 90% of Payment being multi-warehouse transactions,
the database needs to send or receive 3.6 network messages, on
average, for each transaction.

The throughput of Sundial-Pasha drops because the CUSTOMER
and STOCK tables will be accessed by multiple hosts, so we move
them to the shared region, which is stored in CXL memory. Nev-
ertheless, Sundial-Pasha still has 1.1× higher throughput than
Sundial-SHM because Sundial-Pasha partitions the other tables. In
addition, Sundial-Pasha only migrates 58% of the data generated by
TPC-C into shared CXL memory, and subsequently reduces the syn-
chronization overhead across hosts while Sundial-SHM shared all
data in all tables. If the database supported dynamic data movement
between the shared region and partitions, then the full CUSTOMER
and STOCK tables would not need to be in shared CXL memory. We
leave this research challenge (§3.2) for future work. In addition,
supporting dynamic data movement will allow the database to store
much less data in the shared region and further reduce the over-
head of CXL memory access and increase transaction throughput.
Sundial-Pasha has up to 5.9× and 1.6× higher throughput than
Sundial-NET and Sundial-CXL, respectively, (i.e., the case with 60%
of NewOrder and 90% of Payment being multi-warehouse transac-
tions).

5 Related Work
We now place our work in the context of prior research.
Databases over CXL Memory. Many papers consider optimizing
databases using CXL memory [11, 13, 28, 38] such as elastically
allocating CXL memory [28] or leveraging it for data shuffling [13].
One paper considers mapping an SSD to the memory address space
through CXL protocols and adopts hardware-based optimizations
(e.g., (de)compression) when databases interact with this memory
address space [29]. Two papers discuss the research opportunities
of building databases over CXL memory [22, 30], but none of them
consider a new database architecture for CXL memory.
Partition-based Distributed Databases. Traditional distributed
databases adopt a shared-nothing architecture, where data is parti-
tioned across multiple hosts. Their performance degrades quickly
when the number of multi-host transactions increases due to the
high cross-host communication cost and 2PC [17, 24, 36, 42]. Many

papers optimize this shared-nothing architecture by eliminating
or reducing the number of multi-host transactions [18, 34, 37, 40],
optimizing concurrency control protocols [26, 35, 51, 55], or elimi-
nating or reducing the cost of 2PC [32, 33, 43]. However, this line
of research leverages networks to coordinate and synchronize con-
current accesses and committing transactions, introducing a high
overhead compared to a single-node shared-memory database.
Cloud Databases and RDMA-based Databases. The storage-
disaggregated database architecture has been adopted by many
cloud vendors [12, 19, 44]. Its performance bottleneck is the single
primary node for processing read-write transactions. Therefore,
several products and papers address this limitation by scaling the
primary node to multiple nodes, including Oracle RAC [8], Tauras
MM [20], and PolarDB-MP [48], using RDMA networks, similar to
research on RDMA-based distributed databases [46, 52, 53, 57]. The
common architecture is having each host read/write data stored in
the RDMA-connected shared memory to avoid multi-host transac-
tions and optionally cache data in local DRAM to reduce commu-
nication cost. Our research, instead, is based on a CXL pod, a new
hardware setup with higher performance, and proposes a novel
database architecture that prior research did not consider.

6 Conclusion
In this paper, we propose Pasha, a new database architecture for
CXL pods, and discuss the research challenges for realizing Pasha.
Pasha takes advantage of both partitioned and shared database
architectures for scaling databases on the CXL pod. Our prelimi-
nary results on a prototype in-memory database show that Pasha
has up to 5.9× and 1.4× higher throughput than a partition-based
shared-nothing architecture and a shared-memory architecture,
respectively.

7 Acknowledgments
Our work is supported in part by PRISM, one of the seven centers
in JUMP 2.0, a Semiconductor Research Corporation (SRC) program
sponsored by DARPA. We thank Nam Sung Kim and Yan Sun at
UIUC for technical consultation and for providing an experimental
testbed.

References
[1] 2022. Compute Express Link (CXL) Specification, Revision 3.0, Version

1.0. https://computeexpresslink.org/wp-content/uploads/2024/02/CXL-3.0-
Specification.pdf

[2] 2023. Intel Corporation. Intel® memory latency checker v3.10. https:
//www.intel.com/content/www/us/en/developer/articles/tool/intelrmemory-
latency-checker.html Accessed 2024.

[3] 2024. Aurora Serverless. https://aws.amazon.com/rds/aurora/serverless/ (Ac-
cessed 2024).

[4] 2024. Azure SQL Serverless. https://learn.microsoft.com/en-us/azure/azure-sql/
database/serverless-tier-overview?view=azuresql&tabs=general-purpose (Ac-
cessed 2024).

[5] 2024. CockroachDB Serverless. https://www.cockroachlabs.com/blog/
announcing-cockroachdb-serverless/ (Accessed 2024).

[6] 2024. Compute Express Link. https://en.wikipedia.org/wiki/Compute_Express_
Link Accessed 2024.

[7] 2024. Compute Express Link (CXL) Specification, Revision 3.1.
https://computeexpresslink.org/wp-content/uploads/2024/02/CXL-3.1-
Specification.pdf Accessed 2024.

[8] 2024. Oracle RAC. https://www.oracle.com/technetwork/database/options/
clustering/overview/new-generation-oracle-rac-5975370.pdf (Accessed 2024).

[9] 2024. Sierra Forest. https://en.wikipedia.org/wiki/Sierra_Forest (Accessed 2024).
[10] 2024. TPC Benchmark C. https://www.tpc.org/tpcc/ Accessed 2024.

6

https://computeexpresslink.org/wp-content/uploads/2024/02/CXL-3.0-Specification.pdf
https://computeexpresslink.org/wp-content/uploads/2024/02/CXL-3.0-Specification.pdf
https://www.intel.com/content/www/us/en/developer/articles/tool/intelrmemory-latency-checker.html
https://www.intel.com/content/www/us/en/developer/articles/tool/intelrmemory-latency-checker.html
https://www.intel.com/content/www/us/en/developer/articles/tool/intelrmemory-latency-checker.html
https://aws.amazon.com/rds/aurora/serverless/
https://learn.microsoft.com/en-us/azure/azure-sql/database/serverless-tier-overview?view=azuresql&tabs=general-purpose
https://learn.microsoft.com/en-us/azure/azure-sql/database/serverless-tier-overview?view=azuresql&tabs=general-purpose
https://www.cockroachlabs.com/blog/announcing-cockroachdb-serverless/
https://www.cockroachlabs.com/blog/announcing-cockroachdb-serverless/
https://en.wikipedia.org/wiki/Compute_Express_Link
https://en.wikipedia.org/wiki/Compute_Express_Link
https://computeexpresslink.org/wp-content/uploads/2024/02/CXL-3.1-Specification.pdf
https://computeexpresslink.org/wp-content/uploads/2024/02/CXL-3.1-Specification.pdf
https://www.oracle.com/technetwork/database/options/clustering/overview/new-generation-oracle-rac-5975370.pdf
https://www.oracle.com/technetwork/database/options/clustering/overview/new-generation-oracle-rac-5975370.pdf
https://en.wikipedia.org/wiki/Sierra_Forest
https://www.tpc.org/tpcc/


[11] Minseon Ahn, Andrew Chang, Donghun Lee, Jongmin Gim, Jungmin Kim, Jaemin
Jung, Oliver Rebholz, Vincent Pham, Krishna T. Malladi, and Yang-Seok Ki. 2022.
Enabling CXLMemory Expansion for In-MemoryDatabaseManagement Systems.
In International Conference on Management of Data, DaMoN 2022, Philadelphia,
PA, USA, 13 June 2022, Spyros Blanas and Norman May (Eds.). ACM, 8:1–8:5.
https://doi.org/10.1145/3533737.3535090

[12] Panagiotis Antonopoulos, Alex Budovski, Cristian Diaconu, Alejandro Hernandez
Saenz, Jack Hu, Hanuma Kodavalla, Donald Kossmann, Sandeep Lingam, Umar Fa-
rooq Minhas, Naveen Prakash, Vijendra Purohit, Hugh Qu, Chaitanya Sreenivas
Ravella, Krystyna Reisteter, Sheetal Shrotri, Dixin Tang, and Vikram Wakade.
2019. Socrates: The New SQL Server in the Cloud. In Proceedings of the 2019
International Conference on Management of Data, SIGMOD Conference 2019, Ams-
terdam, The Netherlands, June 30 - July 5, 2019, Peter A. Boncz, Stefan Manegold,
Anastasia Ailamaki, Amol Deshpande, and Tim Kraska (Eds.). ACM, 1743–1756.
https://doi.org/10.1145/3299869.3314047

[13] Alexander Baumstark, Marcus Paradies, Kai-Uwe Sattler, Steffen Kläbe, and
Stephan Baumann. 2024. So Far and yet so Near - Accelerating Distributed Joins
with CXL. In Proceedings of the 20th International Workshop on Data Management
on New Hardware, DaMoN 2024, Santiago, Chile, 10 June 2024, Carsten Binnig and
Nesime Tatbul (Eds.). ACM, 7:1–7:9. https://doi.org/10.1145/3662010.3663449

[14] Daniel S. Berger. 2024. Realistic Expectations for CXL Memory Pools. https:
//dimes.ws/program/#realistic-expectations-for-cxl-memory-pools

[15] Geoffrey Blake, Ronald G. Dreslinski, and Trevor N. Mudge. 2009. Proactive
transaction scheduling for contention management. In 42st Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO-42 2009), December 12-16,
2009, New York, New York, USA, David H. Albonesi, Margaret Martonosi, David I.
August, and José F. Martínez (Eds.). ACM, 156–167. https://doi.org/10.1145/
1669112.1669133

[16] Michael J. Cahill, Uwe Röhm, and Alan D. Fekete. 2008. Serializable isolation for
snapshot databases. In Proceedings of the ACM SIGMOD International Conference
on Management of Data, SIGMOD 2008, Vancouver, BC, Canada, June 10-12, 2008,
Jason Tsong-Li Wang (Ed.). ACM, 729–738. https://doi.org/10.1145/1376616.
1376690

[17] James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher
Frost, J. J. Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser, Pe-
ter Hochschild, Wilson C. Hsieh, Sebastian Kanthak, Eugene Kogan, Hongyi
Li, Alexander Lloyd, Sergey Melnik, David Mwaura, David Nagle, Sean Quin-
lan, Rajesh Rao, Lindsay Rolig, Yasushi Saito, Michal Szymaniak, Christopher
Taylor, Ruth Wang, and Dale Woodford. 2012. Spanner: Google’s Globally-
Distributed Database. In 10th USENIX Symposium on Operating Systems De-
sign and Implementation, OSDI 2012, Hollywood, CA, USA, October 8-10, 2012,
Chandu Thekkath and Amin Vahdat (Eds.). USENIX Association, 251–264. https:
//www.usenix.org/conference/osdi12/technical-sessions/presentation/corbett

[18] Carlo Curino, Yang Zhang, Evan P. C. Jones, and Samuel Madden. 2010. Schism:
a Workload-Driven Approach to Database Replication and Partitioning. Proc.
VLDB Endow. 3, 1 (2010), 48–57. https://doi.org/10.14778/1920841.1920853

[19] Alex Depoutovitch, Chong Chen, Jin Chen, Paul Larson, Shu Lin, Jack Ng, Wenlin
Cui, Qiang Liu, Wei Huang, Yong Xiao, and Yongjun He. 2020. Taurus Database:
How to be Fast, Available, and Frugal in the Cloud. In Proceedings of the 2020
International Conference on Management of Data, SIGMOD Conference 2020, online
conference [Portland, OR, USA], June 14-19, 2020, David Maier, Rachel Pottinger,
AnHai Doan, Wang-Chiew Tan, Abdussalam Alawini, and Hung Q. Ngo (Eds.).
ACM, 1463–1478. https://doi.org/10.1145/3318464.3386129

[20] Alex Depoutovitch, Chong Chen, Per-Åke Larson, Jack Ng, Shu Lin, Guanzhu
Xiong, Paul Lee, Emad Boctor, Samiao Ren, Lengdong Wu, Yuchen Zhang, and
Calvin Sun. 2023. Taurus MM: bringing multi-master to the cloud. Proc. VLDB
Endow. 16, 12 (2023), 3488–3500. https://doi.org/10.14778/3611540.3611542

[21] Peter Xiang Gao, Akshay Narayan, Sagar Karandikar, João Carreira, Sangjin
Han, Rachit Agarwal, Sylvia Ratnasamy, and Scott Shenker. 2016. Network
Requirements for Resource Disaggregation. In 12th USENIX Symposium on Op-
erating Systems Design and Implementation, OSDI 2016, Savannah, GA, USA,
November 2-4, 2016, Kimberly Keeton and Timothy Roscoe (Eds.). USENIX
Association, 249–264. https://www.usenix.org/conference/osdi16/technical-
sessions/presentation/gao

[22] Yunyan Guo and Guoliang Li. 2024. A CXL-Powered Database System: Opportu-
nities and Challenges. (2024). https://dbgroup.cs.tsinghua.edu.cn/ligl/papers/
CXL_ICDE.pdf

[23] Sunita Jain, Nagaradhesh Yeleswarapu, Hasan Al Maruf, and Rita Gupta. 2024.
Memory Sharing with CXL: Hardware and Software Design Approaches.

[24] Robert Kallman, Hideaki Kimura, Jonathan Natkins, Andrew Pavlo, Alex Rasin,
Stanley B. Zdonik, Evan P. C. Jones, Samuel Madden, Michael Stonebraker, Yang
Zhang, John Hugg, and Daniel J. Abadi. 2008. H-store: a high-performance,
distributed main memory transaction processing system. Proc. VLDB Endow. 1, 2
(2008), 1496–1499. https://doi.org/10.14778/1454159.1454211

[25] Junbin Kang, Le Cai, Feifei Li, Xingxuan Zhou, Wei Cao, Songlu Cai, and Daming
Shao. 2022. Remus: Efficient Live Migration for Distributed Databases with
Snapshot Isolation. In SIGMOD ’22: International Conference on Management of
Data, Philadelphia, PA, USA, June 12 - 17, 2022, Zachary G. Ives, Angela Bonifati,

and Amr El Abbadi (Eds.). ACM, 2232–2245. https://doi.org/10.1145/3514221.
3526047

[26] Ziliang Lai, Hua Fan, Wenchao Zhou, Zhanfeng Ma, Xiang Peng, Feifei Li, and
Eric Lo. 2023. Knock Out 2PC with Practicality Intact: a High-performance and
General Distributed Transaction Protocol. In 39th IEEE International Conference on
Data Engineering, ICDE 2023, Anaheim, CA, USA, April 3-7, 2023. IEEE, 2317–2331.
https://doi.org/10.1109/ICDE55515.2023.00179

[27] Per-Åke Larson, Spyros Blanas, Cristian Diaconu, Craig Freedman, Jignesh M.
Patel, and Mike Zwilling. 2011. High-Performance Concurrency Control Mech-
anisms for Main-Memory Databases. Proc. VLDB Endow. 5, 4 (2011), 298–309.
https://doi.org/10.14778/2095686.2095689

[28] Donghun Lee, Thomas Willhalm, Minseon Ahn, Suprasad Mutalik Desai, Daniel
Booss, Navneet Singh, Daniel Ritter, Jungmin Kim, and Oliver Rebholz. 2023.
Elastic Use of Far Memory for In-Memory Database Management Systems. In
Proceedings of the 19th International Workshop on Data Management on New
Hardware, DaMoN 2023, Seattle, WA, USA, June 18-23, 2023, Norman May and
Nesime Tatbul (Eds.). ACM, 35–43. https://doi.org/10.1145/3592980.3595311

[29] Sangjin Lee, Alberto Lerner, Philippe Bonnet, and Philippe Cudré-Mauroux. 2024.
Database Kernels: Seamless Integration of Database Systems and Fast Storage
via CXL.. In CIDR.

[30] Alberto Lerner and Gustavo Alonso. 2024. CXL and the Return of Scale-Up
Database Engines. CoRR abs/2401.01150 (2024).

[31] Huaicheng Li, Daniel S. Berger, Stanko Novakovic, Lisa Hsu, Dan Ernst, Pantea
Zardoshti, Monish Shah, Samir Rajadnya, Scott Lee, Ishwar Agarwal, Mark D.
Hill, Marcus Fontoura, and Ricardo Bianchini. 2022. Pond: CXL-Based Memory
Pooling Systems for Cloud Platforms. arXiv:2203.00241

[32] Qian Lin, Pengfei Chang, Gang Chen, Beng Chin Ooi, Kian-Lee Tan, and Zhengkui
Wang. 2016. Towards a Non-2PC Transaction Management in Distributed Data-
base Systems. In Proceedings of the 2016 International Conference on Management
of Data, SIGMOD Conference 2016, San Francisco, CA, USA, June 26 - July 01,
2016, Fatma Özcan, Georgia Koutrika, and Sam Madden (Eds.). ACM, 1659–1674.
https://doi.org/10.1145/2882903.2882923

[33] Yi Lu, Xiangyao Yu, Lei Cao, and Samuel Madden. 2021. Epoch-based Commit
and Replication in Distributed OLTP Databases. Proc. VLDB Endow. 14, 5 (2021),
743–756. https://doi.org/10.14778/3446095.3446098

[34] Yi Lu, Xiangyao Yu, and Samuel Madden. 2019. STAR: Scaling Transactions
through Asymmetric Replication. Proc. VLDB Endow. 12, 11 (2019), 1316–1329.
https://doi.org/10.14778/3342263.3342270

[35] Hatem A. Mahmoud, Vaibhav Arora, Faisal Nawab, Divyakant Agrawal, and
Amr El Abbadi. 2014. MaaT: Effective and scalable coordination of distributed
transactions in the cloud. Proc. VLDB Endow. 7, 5 (2014), 329–340. https://doi.
org/10.14778/2732269.2732270

[36] C. Mohan, Bruce G. Lindsay, and Ron Obermarck. 1986. Transaction Management
in the R* Distributed Database Management System. ACM Trans. Database Syst.
11, 4 (1986), 378–396. https://doi.org/10.1145/7239.7266

[37] Andrew Pavlo, Carlo Curino, and Stanley B. Zdonik. 2012. Skew-aware automatic
database partitioning in shared-nothing, parallel OLTP systems. In Proceedings
of the ACM SIGMOD International Conference on Management of Data, SIGMOD
2012, Scottsdale, AZ, USA, May 20-24, 2012, K. Selçuk Candan, Yi Chen, Richard T.
Snodgrass, Luis Gravano, and Ariel Fuxman (Eds.). ACM, 61–72. https://doi.org/
10.1145/2213836.2213844

[38] Niklas Riekenbrauck, Marcel Weisgut, Daniel Lindner, and Tilmann Rabl. 2024.
A Three-Tier Buffer Manager Integrating CXL Device Memory for Database
Systems. In 40th International Conference on Data Engineering, ICDE 2024 - Work-
shops, Utrecht, Netherlands, May 13-16, 2024. IEEE, 395–401. https://doi.org/10.
1109/ICDEW61823.2024.00063

[39] Daniel J. Scales and Kourosh Gharachorloo. 1997. Design and Performance
of the Shasta Distributed Shared Memory Protocol. In Proceedings of the 11th
international conference on Supercomputing, ICS 1997, Vienna, Austria, July 7-
11, 1997, Steven J. Wallach and Hans P. Zima (Eds.). ACM, 245–252. https:
//doi.org/10.1145/263580.263643

[40] Marco Serafini, Rebecca Taft, Aaron J. Elmore, Andrew Pavlo, Ashraf Aboulnaga,
and Michael Stonebraker. 2016. Clay: Fine-Grained Adaptive Partitioning for
General Database Schemas. Proc. VLDB Endow. 10, 4 (2016), 445–456. https:
//doi.org/10.14778/3025111.3025125

[41] Yan Sun, Yifan Yuan, Zeduo Yu, Reese Kuper, Chihun Song, Jinghan Huang,
Houxiang Ji, Siddharth Agarwal, Jiaqi Lou, Ipoom Jeong, Ren Wang, Jung Ho
Ahn, Tianyin Xu, and Nam Sung Kim. 2023. Demystifying CXL Memory with
Genuine CXL-Ready Systems and Devices. In Proceedings of the 56th Annual
IEEE/ACM International Symposium on Microarchitecture (Toronto, ON, Canada)
(MICRO ’23). Association for ComputingMachinery, New York, NY, USA, 105–121.
https://doi.org/10.1145/3613424.3614256

[42] Rebecca Taft, Irfan Sharif, Andrei Matei, Nathan VanBenschoten, Jordan Lewis,
Tobias Grieger, Kai Niemi, Andy Woods, Anne Birzin, Raphael Poss, Paul Bardea,
Amruta Ranade, Ben Darnell, Bram Gruneir, Justin Jaffray, Lucy Zhang, and Peter
Mattis. 2020. CockroachDB: The Resilient Geo-Distributed SQL Database. In
Proceedings of the 2020 International Conference on Management of Data, SIGMOD
Conference 2020, online conference [Portland, OR, USA], June 14-19, 2020, David

7

https://doi.org/10.1145/3533737.3535090
https://doi.org/10.1145/3299869.3314047
https://doi.org/10.1145/3662010.3663449
https://dimes.ws/program/#realistic-expectations-for-cxl-memory-pools
https://dimes.ws/program/#realistic-expectations-for-cxl-memory-pools
https://doi.org/10.1145/1669112.1669133
https://doi.org/10.1145/1669112.1669133
https://doi.org/10.1145/1376616.1376690
https://doi.org/10.1145/1376616.1376690
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/corbett
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/corbett
https://doi.org/10.14778/1920841.1920853
https://doi.org/10.1145/3318464.3386129
https://doi.org/10.14778/3611540.3611542
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/gao
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/gao
https://dbgroup.cs.tsinghua.edu.cn/ligl/papers/CXL_ICDE.pdf
https://dbgroup.cs.tsinghua.edu.cn/ligl/papers/CXL_ICDE.pdf
https://doi.org/10.14778/1454159.1454211
https://doi.org/10.1145/3514221.3526047
https://doi.org/10.1145/3514221.3526047
https://doi.org/10.1109/ICDE55515.2023.00179
https://doi.org/10.14778/2095686.2095689
https://doi.org/10.1145/3592980.3595311
https://arxiv.org/abs/2203.00241
https://doi.org/10.1145/2882903.2882923
https://doi.org/10.14778/3446095.3446098
https://doi.org/10.14778/3342263.3342270
https://doi.org/10.14778/2732269.2732270
https://doi.org/10.14778/2732269.2732270
https://doi.org/10.1145/7239.7266
https://doi.org/10.1145/2213836.2213844
https://doi.org/10.1145/2213836.2213844
https://doi.org/10.1109/ICDEW61823.2024.00063
https://doi.org/10.1109/ICDEW61823.2024.00063
https://doi.org/10.1145/263580.263643
https://doi.org/10.1145/263580.263643
https://doi.org/10.14778/3025111.3025125
https://doi.org/10.14778/3025111.3025125
https://doi.org/10.1145/3613424.3614256


Maier, Rachel Pottinger, AnHai Doan, Wang-Chiew Tan, Abdussalam Alawini,
and Hung Q. Ngo (Eds.). ACM, 1493–1509. https://doi.org/10.1145/3318464.
3386134

[43] Alexander Thomson, Thaddeus Diamond, Shu-ChunWeng, Kun Ren, Philip Shao,
and Daniel J. Abadi. 2012. Calvin: fast distributed transactions for partitioned
database systems. In Proceedings of the ACM SIGMOD International Conference on
Management of Data, SIGMOD 2012, Scottsdale, AZ, USA,May 20-24, 2012, K. Selçuk
Candan, Yi Chen, Richard T. Snodgrass, Luis Gravano, and Ariel Fuxman (Eds.).
ACM, 1–12. https://doi.org/10.1145/2213836.2213838

[44] Alexandre Verbitski, Anurag Gupta, Debanjan Saha, Murali Brahmadesam, Ka-
mal Gupta, Raman Mittal, Sailesh Krishnamurthy, Sandor Maurice, Tengiz
Kharatishvili, and Xiaofeng Bao. 2017. Amazon Aurora: Design Considera-
tions for High Throughput Cloud-Native Relational Databases. In Proceedings
of the 2017 ACM International Conference on Management of Data, SIGMOD
Conference 2017, Chicago, IL, USA, May 14-19, 2017, Semih Salihoglu, Wen-
chao Zhou, Rada Chirkova, Jun Yang, and Dan Suciu (Eds.). ACM, 1041–1052.
https://doi.org/10.1145/3035918.3056101

[45] Tianzheng Wang and Ryan Johnson. 2014. Scalable Logging through Emerging
Non-Volatile Memory. Proc. VLDB Endow. 7, 10 (2014), 865–876. https://doi.org/
10.14778/2732951.2732960

[46] Xingda Wei, Jiaxin Shi, Yanzhe Chen, Rong Chen, and Haibo Chen. 2015. Fast
in-memory transaction processing using RDMA and HTM. In Proceedings of
the 25th Symposium on Operating Systems Principles, SOSP 2015, Monterey, CA,
USA, October 4-7, 2015, Ethan L. Miller and Steven Hand (Eds.). ACM, 87–104.
https://doi.org/10.1145/2815400.2815419

[47] Emmett Witchel. 2024. Challenges and Opportunities for Systems Using CXL
Memory. In Proceedings of the 29th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume 3. 2–2.

[48] Xinjun Yang, Yingqiang Zhang, Hao Chen, Feifei Li, Bo Wang, Jing Fang, Chuan
Sun, and Yuhui Wang. 2024. PolarDB-MP: A Multi-Primary Cloud-Native Data-
base via Disaggregated Shared Memory. In Companion of the 2024 International
Conference on Management of Data, SIGMOD/PODS 2024, Santiago AA, Chile, June
9-15, 2024, Pablo Barceló, Nayat Sánchez Pi, Alexandra Meliou, and S. Sudarshan
(Eds.). ACM, 295–308. https://doi.org/10.1145/3626246.3653377

[49] Richard M. Yoo and Hsien-Hsin S. Lee. 2008. Adaptive transaction scheduling for
transactional memory systems. In SPAA 2008: Proceedings of the 20th Annual ACM
Symposium on Parallelism in Algorithms and Architectures, Munich, Germany,
June 14-16, 2008, Friedhelm Meyer auf der Heide and Nir Shavit (Eds.). ACM,

169–178. https://doi.org/10.1145/1378533.1378564
[50] Xiangyao Yu, George Bezerra, Andrew Pavlo, Srinivas Devadas, and Michael

Stonebraker. 2014. Staring into the Abyss: An Evaluation of Concurrency Control
with One Thousand Cores. Proc. VLDB Endow. 8, 3 (2014), 209–220. https:
//doi.org/10.14778/2735508.2735511

[51] Xiangyao Yu, Yu Xia, Andrew Pavlo, Daniel Sánchez, Larry Rudolph, and Srinivas
Devadas. 2018. Sundial: Harmonizing Concurrency Control and Caching in a
Distributed OLTP Database Management System. Proc. VLDB Endow. 11, 10
(2018), 1289–1302. https://doi.org/10.14778/3231751.3231763

[52] Erfan Zamanian, Carsten Binnig, Tim Kraska, and Tim Harris. 2017. The End
of a Myth: Distributed Transaction Can Scale. Proc. VLDB Endow. 10, 6 (2017),
685–696. https://doi.org/10.14778/3055330.3055335

[53] Ming Zhang, Yu Hua, Pengfei Zuo, and Lurong Liu. 2022. FORD: Fast One-sided
RDMA-based Distributed Transactions for Disaggregated Persistent Memory.
In 20th USENIX Conference on File and Storage Technologies, FAST 2022, Santa
Clara, CA, USA, February 22-24, 2022, Dean Hildebrand and Donald E. Porter
(Eds.). USENIX Association, 51–68. https://www.usenix.org/conference/fast22/
presentation/zhang-ming

[54] Wenting Zheng, Stephen Tu, Eddie Kohler, and Barbara Liskov. 2014. Fast
Databases with Fast Durability and Recovery Through Multicore Parallelism.
In 11th USENIX Symposium on Operating Systems Design and Implementation,
OSDI ’14, Broomfield, CO, USA, October 6-8, 2014, Jason Flinn and Hank Levy
(Eds.). USENIXAssociation, 465–477. https://www.usenix.org/conference/osdi14/
technical-sessions/presentation/zheng_wenting

[55] Xinjing Zhou, Xiangyao Yu, Goetz Graefe, and Michael Stonebraker. 2022. Lotus:
Scalable Multi-Partition Transactions on Single-Threaded Partitioned Databases.
Proc. VLDB Endow. 15, 11 (2022), 2939–2952. https://doi.org/10.14778/3551793.
3551843

[56] Zhiting Zhu, Newton Ni, Yibo Huang, Yan Sun, Zhipeng Jia, Nam Sung Kim,
and Emmett Witchel. 2024. Lupin: Tolerating Partial Failures in a CXL Pod. In
Proceedings of the 2nd Workshop on Disruptive Memory Systems (Austin, TX, USA)
(DIMES ’24). Association for Computing Machinery, New York, NY, USA, 41–50.
https://doi.org/10.1145/3698783.3699377

[57] Tobias Ziegler, Philip A. Bernstein, Viktor Leis, and Carsten Binnig. 2023. Is
Scalable OLTP in the Cloud a Solved Problem?. In 13th Conference on Innovative
Data Systems Research, CIDR 2023, Amsterdam, The Netherlands, January 8-11,
2023. www.cidrdb.org. https://www.cidrdb.org/cidr2023/papers/p50-ziegler.pdf

8

https://doi.org/10.1145/3318464.3386134
https://doi.org/10.1145/3318464.3386134
https://doi.org/10.1145/2213836.2213838
https://doi.org/10.1145/3035918.3056101
https://doi.org/10.14778/2732951.2732960
https://doi.org/10.14778/2732951.2732960
https://doi.org/10.1145/2815400.2815419
https://doi.org/10.1145/3626246.3653377
https://doi.org/10.1145/1378533.1378564
https://doi.org/10.14778/2735508.2735511
https://doi.org/10.14778/2735508.2735511
https://doi.org/10.14778/3231751.3231763
https://doi.org/10.14778/3055330.3055335
https://www.usenix.org/conference/fast22/presentation/zhang-ming
https://www.usenix.org/conference/fast22/presentation/zhang-ming
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/zheng_wenting
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/zheng_wenting
https://doi.org/10.14778/3551793.3551843
https://doi.org/10.14778/3551793.3551843
https://doi.org/10.1145/3698783.3699377
https://www.cidrdb.org/cidr2023/papers/p50-ziegler.pdf

	Abstract
	1 Introduction
	2 CXL Pod Preliminaries
	2.1 CXL memory and a CXL pod
	2.2 Performance characteristics of CXL memory

	3 Pasha Architecture and Challenges
	3.1 Pasha architecture
	3.2 Research challenges

	4 Preliminary Results
	5 Related Work
	6 Conclusion
	7 Acknowledgments
	References

