
Motivation

Building a Distributed Database on a CXL Pod:
Synchronizing Data Accesses without Networks
Yibo Huang (ybhuang@cs.utexas.edu), Vijay Chidambaram, Dixin Tang, Emmett Witchel
The University of Texas at Austin

How to scale a single-node DB to multiple nodes?

Existing work synchronize data accesses via 
networks, leading to numerous message exchanges 

and inevitable overhead

Sync over Memory >>> Sync over Network

A New Opportunity: CXL Pod
● A collection of hosts connected to a shared CXL memory device
● Hardware-based cache coherence across hosts
● Better performance than RDMA

Design & Example

Evaluation
● Experiment Setup

○ Use VMs and a CXL 1.1 memory module for CXL pod emulation
○ Use SR-IOV to emulate Ethernet

But CXL Memory has Limitations...

We only need to maintain CAT in CXL memory
(CAT: Cross-host Active Tuples)

● Initially, data is partitioned and stored in local DRAM
● Tuples are moved in upon requests and moved out based on policies
● Use software cache-coherence for data to reduce data movement
● Adopt 2PL and enhance it to efficiently coordinate concurrent accesses

● Prototype and Baselines
○ Sundial-Pasha - Pasha prototype based on Sundial
○ Sundial-NET - Sundial using network as a transport
○ Sundial-CXL - Sundial using CXL as a transport
○ Sundial-SHM - Sundial adopting a shared-memory architecture

● TPC-C with different percentages of distributed transactions

● YCSB (RW = 1:1, uniform distribution) with different percentages of 
distributed transactions

● (a) Partition-based Shared-nothing Architecture 
○ sends messages for synchronization (e.g., 2PC)
○ bad for non-partitionable workloads

● (b) RDMA-based Shared-memory Architecture
○ uses one-sided RDMA
○ suffers from the high latency of RDMA

● Sync over memory: shared data structure + atomic operations
● Sync over network: message passing with multiple roundtrips

1. Limited hardware cache-coherence across hosts
2. 2-4× higher latency than local DRAM

Key Insight


